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Optimal control of product quality for batch nylon-6,6 autoclaves
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Abstract

Dynamic optimization problems are usually solved by transforming them into nonlinear programming (NLP) models with either sequen-
tial or simultaneous approaches. In this paper, the potential and limitations of both procedures in solving a general batch nylon-6,6 autoclave
optimization model are evaluated and discussed. Nylon-6,6 is a highly value-added good produced in large-scale under many different spec-
ifications. Highly nonlinear behavior, lack of on-line measurements of polymer qualities and several disturbances inherent to this process
motivate its optimal operation. In addition, the operation during the finishing stage of the batch polycondensation is crucial since it largely
determines the final product molecular weight and quality. Results show that both strategies can be successfully applied to solve the dy-
namic optimization problem only after an expressive level of investments in terms of modeling implementation. However, the simultaneous
strategy has the advantage that specification constraints can be directly enforced in the model, thus generating better and more robust results.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Preliminaries

Due to the ever-increasing global competition environ-
ment, several factors have encouraged better monitoring and
control strategies of end-use quality variables in nylon-6,6
polymerization processes. Nylon-6,6 is a highly value-added
good produced in large-scale under many different specifica-
tions. Moreover, it is well-known that process operation play
an important role in both reactor design and control. In par-
ticular, the highly nonlinear behavior of the process, the fre-
quent obstacles in on-line reactor measurements of nylon-6,6
end-use qualities as well as the several disturbances inher-
ent to this process (e.g., water content in the feed) have em-
phasized the importance of reactor modeling. Furthermore,
this problem is often embedded in higher-level problems, as
the plant-wide dynamic optimization aiming to produce op-
timally integrated planning and scheduling policies, whose
benefits are well documented in other fields of chemical en-
gineering[1], given the important ease that relatively sophis-
ticated plant-wide dynamic models involving thousands of
states can now be handled through the existing technology.
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On the other hand, limited up to the middle of the 1980s
not only by computational restrictions but decisively due
to little availability of published information, detailed sim-
ulation and optimization of nylon-6,6 reactors had to be
postponed to the 1990s. Till then, kinetic information was
practically reduced to the pioneers, nevertheless limited re-
sults from Ogata[2,3]. Additionally, there was no published
data on vapor–liquid equilibrium to model water vaporiza-
tion. This information is very crucial since the final degree
of polymerization depends on the water concentration in
the melt, and this in turn depends on the pressure and
temperature, as well as the composition of the liquid phase.

As a consequence of subsequent studies about kinetic
modeling produced ever since[4,5], the recent years have
been characterized by an increasing number of modeling
developments and refinements reported in the open liter-
ature that addresses nylon-6,6 production in a number of
different reactors. Thin or continuous wiped film reactors
modeling have been studied by Steppan et al.[6] and Choi
and Lee[7]. Giudici et al. [8] addressed the catalytic and
homogeneous process conduced in twin-screw extruder
reactors. Batch autoclave models and control strategies
have been investigated by Russell et al.[9], whereas prac-
tical approaches to the control of final product quality in
semi-batch reactors are discussed by Yabuki et al.[10] and
Clarke-Pringle and MacGregor[11]. Tubular reactors un-
der two-phase flow conditions without external catalyst are
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Nomenclature

Ci concentration ofi (mol/l)
Cp specific heat capacity of the liquid

phase (cal/(g◦C))
CT total concentration (mol/l)
Eapp activation energy for degradation

reactionj (cal/mol)
Ekapp apparent activation energy (cal/mol)
�Happ apparent enthalpy of reaction (cal/mol)
�Hiv heat of vaporization ofi (cal/mol)
kapp apparent forward reaction constant

(mol/total mol h)
kj kinetic constant for degradation

reactionj (mol/total mol h)
k0 reference apparent forward rate constant

(mol/total mol h)
k0j reference forward rate constant for

degradation reactionj (mol/total mol h)
k0j kinetic constant rate for degradation

reactionj (h−1)
K overall mass transfer coefficient

(g/(h psia))
Kapp apparent equilibrium constant for

polycondensation reaction
(dimensionless)

K0 reference apparent equilibrium
constant (dimensionless)

Mi molecular weight ofi
Mii molecular weight of ai–i segment

within the polymer molecule
M0 molecular weight of one unit of the

polymer chain
MW average molecular weight of the

polymer
nw moles of water/mole of fundamental

unit (l)
n1 fraction of polymer molecules

that are HMD
NH2 amine end concentration (mol/g)
P reactor pressure (psia)
Pvap solution vapor pressure (psia)
Psat
i pure component vapor pressure (psia)

Qheat heat input (cal/h)
r stoichiometric ratio of monomers
R gas constant
Rj rate of reactionj (mol/(l h))
T reactor temperature (K)
T0 reference temperature (K)
T0j reference temperature for degradation

reactionj (K)
v vent flow rate (g/h)
vM
i molar rates of vaporization ofi (mol/h)

V volume of liquid phase (l)
V̂ specific volume (l/kg)

xi mole fraction ofi in the liquid phase
yi mole fraction ofi in the vapor phase

Greek letters
ε extent of reaction
µi mass fraction ofi in the liquid phase
ρ liquid phase density (g/l)
ωe
i mass fraction ofi in the vapor phase

Subscripts
A amine end groups
C carboxylic end groups
HMD hexamethylene diamine monomer
i components A, C, HMD, L, SE and W
j reactions
L polymer link
SE stabilized end groups
W water molecule

reported by Giudici et al.[12]. Concomitantly, these mod-
els, which in most part rely on (strongly) nonlinear systems
of differential-algebraic equations (DAEs), have motivated
the study and development of solution techniques.

Following this trend, while alternative optimization ap-
proaches, as neural networks (NN) or multi-way projection
to latent structures (MPLS) are living important devel-
opments [13,14], nonlinear programming (NLP) under
constraints remains as basis of major solution techniques
currently used by schedulers[1]. Nevertheless, NLP opti-
mization technology still requires ability to deal with some
well-known algorithmic limitations. As pointed out in[13],
NLP gradient-based approaches usually have to cope with
problems such as numerical evaluations of derivatives (Ja-
cobians and Hessians) and feasibility issues[15]. Moreover,
conventional use of decomposition schemes for dynamic
systems implies in additional difficulties associated with
the resulting NLP, as the presence of algebraic equations
(the index problem), the high dimensionality of discretized
problems, the solution of state equations specially with un-
stable components and the definition of the finite element
lengths for discretization[16].

On the other hand, derivative-free (or direct search) meth-
ods usually overcome some of these drawbacks, so they
may offer a practical approach given the current state of
technology. However, the main deficiency of direct search
comes from the fact that the nonlinear model, which is
normally a time-consuming task, must be solved at each
algorithm iteration. Furthermore, the existence of local so-
lutions in optimization problems is frequent, that may be
partially circumvented by running the optimization algo-
rithm several times with different starting points for decision
variables.

The contribution of this research is twofold. Firstly, two
general and comprehensive NLP-based methodologies for
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optimal control of a generic batch nylon-6,6 autoclave model
are proposed in order to provide useful tools for defining
operating profiles, which can perform as set-point programs
for control systems. Second, the computational performance
of the two approaches are compared and discussed in terms
of algorithmic structures and solution methods.

As basis for the proposed work, we have selected the fun-
damental process model presented in[9], since it captures
the dominant features of the process behavior. In order to
provide a better understanding of the problem, the next sub-
sections take a more in-depth view at the inherent features
of the nylon-6,6 polymerization chemistry as well as at the
batch nylon-6,6 autoclave process. The fundamental model
is introduced inSection 2. Section 3outlines the mathemati-
cal background of the approaches used to solve the previous
differential-algebraic optimization problem (DAOP). Model
simulation, optimization results and evaluation of the solu-
tion techniques are presented inSection 4. Section 5con-
cludes the paper and summarizes future directions.

1.2. The chemistry of nylon-6,6 polymerization

Nylon-6,6 or poly(hexamethylene adipamide) is usually
synthesized in a multistage process in which the product is
obtained from thermal decomposition of nylon-6,6 salt (hex-
amethylene diammonium adipate). As will be discussed in
the next subsection, this salt has the advantage of presenting
an exact 1:1 stoichiometric ratio between –NH2 and –COOH
groups. Although nylon-6,6 production may be carried on
quite a number of different ways from an engineering stand-
point, the chemistry involved is essentially the same.

This paper is concerned with the production of nylon-6,6
by direct amidation of adipic acid and hexamethylene di-
amine in a batch process carried out in autoclave reac-
tors (Fig. 1). In this process, the reactor feed is composed
by molten adipic acid and hexamethylene diamine in ap-
proximately stoichiometric proportions. The polyamidation
can be treated as a second-order reversible reaction of the
a–a/b–b type commonly described in terms of functional
groups for the sake of simplicity. The overall reaction model
for the nylon-6,6 batch autoclave is shown inTable 1, where
A is an amine end group (–NH2), C is a carboxyl end

Fig. 1. Nylon-6,6 reaction.

Table 1
Nylon-6,6 reaction model[9]

Degradation C→ SE+ W (1)
L → SE+ A (2)

Polyamidation A+ C ↔ L + W (3)

group (–COOH), W is a water molecule, L is a polymer link
(–CONH–) and SE refers to a cyclic or stabilized end group.

1.3. Overview of the process

In short, amine end groups on either HMD or polymer
chain react with carboxylic end groups on either adipic acid
monomer or polymer chain, according toEq. (3), to form
a polymer chain link and a molecule of water. Also, degra-
dation reactions (Eqs. (1) and (2)) must be considered[6]
since they affect the temperature dependence of the result-
ing average molecular weight of the polymer (MW). Some
authors[12] also consider a more complete model by adding
the degradation of SE (into CO2 and a Schiff base) to the
model inTable 1. However, we neglect that reaction, as in
[9], in benefit of a simpler formulation.

In most cases, the industrial objective is to maximize
productivity regarding the required end-use product quality.
Eventually, other objectives should be considered due to the
need of blending with some off-spec product or even when
batch time does not need to be minimized. The end-use prod-
uct quality is defined by the MW level and the amine end
concentration (NH2). In this paper, we are concerned with
maximizing nylon-6,6 production under product specifica-
tions for constrained batch run times. In order to achieve
the desired end-use product quality, the extent of reaction
must be above 99%. Therefore, the equilibrium is shifted to-
wards completion by continuous vaporization of water (see
Eq. (3)). Another complicating factor is that MW is very
sensitive to the stoichiometric feed ratio (r) of monomers A
and C, which must be kept near unity. It is worth to note
that since A is supplied by HMD (two A per HMD), which
is also volatile, the loss of HMD through vaporization (and
the subsequent deviation ofr from unity) represents an im-
portant drawback to this approach[9]. Vaporization require-
ment is satisfied by an autoclave reactor (Fig. 2) where there
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Fig. 2. Schematic representation of the batch nylon-6,6 autoclave.

is a valve for venting vaporized water and a steam jacket
that also supplies heat to the reaction medium.

During the batch operation, product quality is usually
monitored by on-line measurements of secondary process
variables, since MW and NH2 can be solely measured after
the batch run. Typically, these measurements include read-
ings of the reactor pressure (P), steam jacket pressure, vent
flow rate and temperature of the liquid phase (T). The reactor
operation can be suitably divided into three distinct stages
[9]. In the first one, theinitial heating phase, an aqueous
equimolar mixture of HMD and adipic acid is charged to the
autoclave that has been previously purged of oxygen. An
extra amount of HMD can also be added in order to compen-
sate losses of this reactant by vaporization. Once charging
is concluded, the exothermic salt formation provides an im-
portant amount of the necessary heat to raise the batch tem-
perature and complementary heat is supplied to the system
by the steam jacket to force the polymerization reaction to
begin. At this stage, the reactants are not yet well-mixed and
the pressure above the reacting solution is maintained higher
than the vapor pressure of the liquid phase to avoid prema-
ture loss of volatile amine feed monomer HMD. Therefore,
since the vent valve is kept closed during this initial phase,
the ratior remains constant. When a sufficient rate of poly-
merization in terms of reacted HMD is achieved, the vent
valve is then opened to allow the escape of vaporized water.
The valve opening starts theboiling phase, in which water
is continuously vented off the reactor with the objective
of allowing high MW polymer levels. Furthermore, mass
transport in the liquid phase becomes more effective due to
boiling and a well-mixed medium is obtained. Thefinishing
phasestarts when water has been removed and boiling no
longer occurs. This important stage of the nylon-6,6 process
has been extensively studied[6,17] since it sets the quality
of the final product. In his phase, heat addition is compli-
cated not only by the increased viscosity in the medium due

to the high polymer MW, but also by reactor fouling. Also,
because of the high polymer melt viscosity during the latter
stages of polymerization, the rate of water removal becomes
a critical factor for the polymerization extent. Therefore,
some measures are frequently taken to facilitate removal of
water, as inert gas bubbling through the melt, increase of
agitation rate or application of partial vacuum. Ultimately,
the desired end-use product quality should normally be
met under time limitations in order to reduce degradation
effects.

2. Fundamental model

As a basis for the proposed study, the fundamental
nylon-6,6 batch autoclave model from Russell et al.[9] is se-
lected since it incorporates a comprehensive and well-known
phenomenological structure supported by first-principles
along with some empirical relations that are tailored for the
system. Moreover, the model is complete with respect to
all complementary information (kinetic and physical prop-
erties). In short, the model relies on the following major
assumptions[9]:

(a) thermal effects of the side reactions (Eqs. (1) and (2))
are neglected;

(b) thermal effects of the vapor phase are neglected;
(c) spatial variations are neglected;
(d) the vapor phase molar balance is neglected;
(e) P (reactor pressure) is a manipulated variable;
(f) water and HMD leave the liquid phase according to their

vapor–liquid equilibrium relations;
(g) equal reactivity(i.e., the reaction rate does not depend

on molecular size);
(h) saturated steam is fed into the reactor jacket and heat

losses are negligible.
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Table 2
The batch nylon-6,6 autoclave model—kinetics[9]

Reaction Kinetics

Degradation
C → SE+ W R1 = k1CC

L → SE+ A R2 = CL

(
k2 + k2c

(
CA

CT

))

Polymerization

A + C ↔ L + W R3 =
(
kapp

CT

)(
CACC −

(
CLCW

Kapp

))

Kinetic relationsa

ki = k0i exp

{(
−Eapp

R

)[(
1

T

)
−
(

1

T0i

)]}
,whereEapp = 30 kcal/mol, R = 1.99 cal/mol K

Kapp = K0 exp

{
−
(
�Happ

R

)[(
1

T

)
−
(

1

T0

)]}
, whereT0 = 473.15 K, R = 1.99 cal/mol K

K0 = exp

{[
1 − 0.47 exp

(
−

√
xw

0.2

)]
(8.45− 4.2xW)

}

�Happ = 7650 tanh[6.5(xW − 0.52)] + 6500 exp
(
− xW

0.065

)
− 800

kapp = k0 exp

{(
−Ekapp

R

)[(
1

T
− 1

T0

)]}
, whereT0 = 473.15 K, R = 1.99 cal/mol K,Ekapp = 21.4 kcal/mol

k0 = exp{2.55− 0.45 tanh[25(xW − 0.55)] + 8.58(tanh[50(xW − 0.1)] − 1)(1 − 30.05xC)}, where
CT = CA + CC + CL + CW + CSE, CHMD = 0.5n1(CA + CC + CSE), xW = CW/CT, xC = CC/CT,

xL = CL/CT, xHMD = CHMD/CT

a For rate constant—k1, k0i : 0.06 h−1, T0i : 566 K; k2, k0i : 0.005 h−1, T0i : 578 K; k2c, k0i : 0.32 h−1, T0i : 578 K.

Assumption (a) comes from the fact that side reaction
rates are much lower than that of the polymerization reac-
tion. Due to the small mass of the vapor phase and its fast
dynamics, (b) takes place. Since only the overall reactor
pressure in the vapor phase,P, affects the liquid phase dy-
namics, (d) holds and (e) emerges from the fact that the pres-
sure control loop is fast (i.e., has negligible dynamics) and
is sufficiently accurate. In order to describe the molecular
size distribution in terms of the Flory distribution[18], (g)
is postulated. Finally, from (h) the heat input to the reactor,
Qheat, becomes simply the heat given up by the condensing

Table 3
The batch nylon-6,6 autoclave model—mass and energy model[9]

Mass and energy balances Mass transfer model

dV CA

dt
= VR2 − (VR3 + vM

A )

{
v = K(Pvap − P) if Pvap> P

v = 0 otherwise
, K = 25 000 g/(h psia)

dV CC

dt
= −V(R3 + R1) vM

i = ωe
i

Mi
v, i = W, HMD

dV CL

dt
= V(R3 − R2) vM

A = 2vM
HMD

dV CW

dt
= V(R3 + R1)− vM

w Vapor–liquid equilibrium (VLE) relations

dV CSE

dt
= V(R1 + R2) and

dρ V

dt
= −v yHMD

yW
= αxHMD

xW
, whereα = Psat

HMD

Psat
W

dT

dt
= −�Hp R3

ρCp
− �HHMD

v vM
HMD

ρCpV
− �HW

v v
M
W

ρCpV
+ Qheat

ρCpV
with �HW

v = 7.724T 2

(T − 45.15)2
, �HHMD

v = 12.4 kcal/mol; T in K

steam and, as a consequence, the manipulation of the jacket
pressure,Pj, is fairly simple, provided that condensate flow
rate is measurable.

The model is characterized by a set of DAEs and nonlin-
ear expressions for constitutive equations, and are summa-
rized inTables 2–6. Original references on the kinetics and
physical property calculations as well as specific features of
the modeling may be found in[9].

As part of the overall formulation, the mass transfer model
(Table 3) involves the vapor pressure term (Pvap) given as
the maximum betweenPvap

1 andPvap
2 . While Pvap

2 relies on
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Table 4
The batch nylon-6,6 autoclave model—quality variables[9]

MW = M0(1 + r)
1 + r − 2ε

and NH2 = 106CA

ρ
with M0 =

MAA

{
(VCA )0 − ∫ t

0(2ω
e
HMDv/MHMD)dt

}
+MCC(VCC)0

(VCA )0 − ∫ t
0(2ω

e
HMDv/MHMD)dt + (VCC)0

Table 5
The batch nylon-6,6 autoclave model—physical properties[9]

Physical properties

Specific volumes (V’s in l/kg and T in K)
V̂W = (1.0046715− 1.99824× 10−4[T − 273.15] − 2.6321× 10−6[T − 273.15]2)−1

V̂poly = (1.13− 0.00052[T − 273.15])−1

V̂sol = V̂W[µW + 0.925(1 − µW − µL )] + V̂polyµL

Vapor pressure relations (P’s in psia and T in K)

Psat
HMD = exp[−1.164316+ 6237.44(0.002807− T−1)] log10

(
760Psat

W

14.7

)
= −

(
1668.21

T − 45.15

)
+ 7.96681

Pvap = max(Pvap
1 , P

vap
2 ), where log10

(
nW

760Pvap
1 /14.7

)
=
(

3050

T

)
− 10.09, Pvap

2 = xW P
sat
W + xHMD P

sat
HMD

Specific heat capacities (Cp in cal/(g◦C) and T in K)
Cpw = 0.997092+ 3.96106× 10−5(T − 273.15)− 5.4726× 10−7(T − 273.15)2 + 1.2037× 10−8(T − 273.15)3

Cp = µWCpw + (1 − µW)[0.4ε2 + 0.5(1 − ε2)]

hypothetical ideality condition for the liquid phase during
most part of the process,Pvap

1 corresponds to the Henry’s
law behavior of the solution for water content not greater
than 0.1 wt.%[2]. The calculation ofPvap

1 involvesnw that
is given byCW/CL. The mass fraction of water and HMD in
the vapor phase,ωe

W andωe
HMD, respectively, are obtained

through VLE relations. However, the mass balances were
postulated in terms of total number of A amine end groups
in such mode that it is not possible to distinguish between
amine end groups at the extreme of HMD molecules and
those at the extreme of polymer molecules[9]. This ap-
parent difficulty is circumvented by assumption (g), which
combined with a suitable modification in Flory’s molecu-
lar weight distribution relations (outlined below) proposed
in [9], result in an expression for the HMD concentration,
CHMD (seeTable 2), in which the term in parenthesis de-
notes the total number of polymer molecules and parameter
n1 denotes the fraction of polymer molecules that are HMD.

Table 6
Modified molecular weight distribution model[9]

Limiting group C (r < 1) Limiting group A (r > 1)

n1 = (1 − rε)2
r + 1 − 2rε

n1 = r(1 − ε)2
r + 1 − 2rε

ε = (VCC)0 − VCC − VCSE

(VCC)0
ε = (VCA )0 − VCA − ∫ t

0(2ω
e
HMDv/MHMD)dt

(VCA )0 − ∫ t
0(2ω

e
HMDv/MHMD)dt

r = (VCC)0

(VCA )0 − ∫ t
0(2ω

e
HMDv/MHMD)dt

r = (VCA )0 − ∫ t
0(2ω

e
HMDv/MHMD)dt

(VCC)0

Also based on the modified Flory’s molecular weight dis-
tribution model for a–a/b–b polymerization[18], the quality
variables are expressed as functions of the modeled process
states and their respective initial feed conditions. In short,
the modified approach accounts for the fact that HMD is
being removed through vaporization whereas C is subject
to degradation by forming stabilized end groups that can no
longer react (Eqs. (1) and (2)). To overcome these effects
that are unaccounted for in Flory’s original derivation, Rus-
sell et al.[9] consider the amount of HMD that has left the
reactor as if it has never been there by assuming that the for-
ward/backward reactions occur fast enough to allow the dis-
tribution to reach its new value instantaneously. In this sense,
the integral term accounts for the total amount of vaporized
HMD. Indeed, since the limiting group for the polymeriza-
tion reaction may change from C towards A during the pro-
cess as a consequence of the HMD vaporization, two sets of
equations must be properly considered, as shown inTable 6.
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3. Solution strategies

3.1. Numerical solution of dynamic optimization problems

A brief overview of general-purpose methods for the nu-
merical solution of the DAOPs that include a system of
ordinary differential equations (ODEs) follows. For conve-
nience, the process model previously introduced is generi-
cally posed as an initial value ODE model as inEq. (4):

Min
x,U(t),Z(t)

φ[x,U(t), Z(t)]

s.t. c[x,U(t), Z(t)] = 0,

Ż(t)=F [x,U(t), Z(t), t] ∀t ∈ [0, tf ],

Z(0) = Z0, xL ≤ x ≤ xU,

UL ≤ U(t) ≤ UU, ZL ≤ Z(t) ≤ ZU

(4)

whereφ is the objective function,c the design equality con-
straint vector,x the time-invariant decision variable vector,
t the time,Z(t) (U(t)) the state (control) profile vector,xL,
xU the decision variable bounds,ZL, ZU (UL, UU) the state
(control) profile bounds.

There is an extensive literature on numerical strategies
that address such class of problems, which fall on three cat-
egories:dynamic programmingbased approaches,indirect
and direct methods. See[19] for review. In short, thedy-
namic programmingmethod was first described by Bellman
[20] and was extended to include constraints on the state
and control variables by Luus[21]. Indeed, the first attempt
to solve the optimal control problem employed concept of
the calculus of variations introduced in the 1960s[22]. In

Fig. 3. Scheme of the control parameterization approach to the model (4).

this variational approach, the optimization problem is trans-
formed into a two-point boundary value problem (TPBVP)
with DAEs. This approach constitutes the basic idea of the
indirect methodsand performs very well for unconstrained
problems, but the solution of the TPBVP remains difficult,
especially with the addition of profile inequalities in the
problem[16].

This paper is concerned with the third class. Since the
decision variables of the nylon-6,6 process model can be
identified as continuous time-invariant, it is possible to
accomplish the optimization by applying variable parame-
terization approaches, ordirect methods. In summary, direct
methods aim to transform the infinite-dimensional dynamic
optimization problem into a finite-dimensional NLP. Within
this class, two general approaches, namelysequentialor
control parameterization strategy[23] and simultaneous
or collocation strategy[24], have been continuously de-
veloped and refined[15,16,25–28]. In this paper, we have
implemented both strategies as discussed next.

3.2. Sequential strategy

In this approach, the key idea is to discretize the control
profiles into piecewise polynomials on finite elements. In an
inner loop, the state and sensitivity equations are integrated
in an initial value problem (IVP) for fixed control profiles
using standard DAE solvers, and this yields function and
gradient values for the NLP solver. An optimization routine
is then applied to solve a master NLP in an outer loop to
update the control actions.Fig. 3 summarizes the method.
In this figure, the controlU(t) is approximated as piecewise
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linear functions (hence the term control parameterization),
where, in the general case, the slopes, intercepts and exten-
sions of each finite element can be taken as optimization
variables in the master NLP.

The major advantage of this strategy lies in the reduced
dimensionality of the NLP, since the number of control
variablesu and parameters remains small even for very
complex models. However, inequality constraints and/or
boundary conditions on state variables, as the nylon-6,6
quality specifications, cannot be directly enforced[25]. In
addition, the solution of the IVP might be infeasible or too
costly to converge at intermediate trial points[16].

Discretization using control parameterization allows ob-
jective function and point constraints of (4) to be expressed
as functions of a finite number of time-invariant variablesv
(or parameters), which characterize the basis functions. This
approach leads to a decomposition of the original DAOP
into two subproblems, in which the constraints may in prin-
ciple be handled in a number of ways[29]. In this paper, we
use piecewise linear control policy underN equal sampling
intervals, with the requirement for continuity of the con-
trol from one finite element to another. Excluding bounds
on profiles, the fundamental process model synthesized in
(4) does not contain any inequality path constraint, but a
number of equality path constraints, which can be included
into the DAE model to be solved simultaneously[29]. The
targets for the product qualities, which constitute the ma-
jor state constraints of the problem are imposed as equality
point constraints. Based on results from the integration step,
these constraints are evaluated at the outer loop and the mea-
sured violations are taken into account through penalization
of objective in the master NLP. Therefore, the resulting se-
quential procedure consists of the following steps:

(a) An IVP subproblem, which is the numerical integration
of the DAE system formed bẏZ(t) andc for the fixed
controlyT = [xT, uT

1(v, t), u
T
2(v, t), . . . , u

T
N(v, t)] deter-

mined by the optimization step (or by the initial guess
at the first iteration) using the initial state condition of
(4). This step yieldsz(y).

(b) A master NLP subproblem in terms ofy, for which the
bounds are determined directly from (4):

Min
v

φ[z(y), y] + ω errγMW errηNH2

s.t. Z
target
q − Zq = errq q = MW,NH2,

yL ≤ y ≤ yU

(5)

As seen, we have included the termω errγMW errηNH2
to the

original objective of (4) to account for deviations from the
product qualities targets in (5). Here,ω is a weighting fac-
tor andγ andη are real exponents. In principle, the master
NLP can be solved with either gradient-based approaches
such as generalized reduced gradient (GRG)[30] or succes-
sive quadratic programming (SQP)[31], or gradient-free ap-
proaches such as direct search or stochastic search[32,33].
Nevertheless, efficient control parameterization usually re-

Fig. 4. Functional structure of the implemented sequential strategy.

quires the gradients of the objective function and constraints
with respect to the optimization parameters[19]. This in turn
justifies in part the extensive work that has been produced in
order to evaluate the sensitivities in mathematical program-
ming [34]. Reviews on both theoretical and computational
features of the main approaches for computing gradients in
DAE systems may be found in[35].

However, the nylon-6,6 process model presented in
Section 2 involves a complex mathematical dependence
between the objective (as well as part of the constraints)
and the controly, in such mode that analytical derivation
of the gradients would be a hard task. This becomes an
important drawback to the use of sensitivity approaches
based on derivative evaluation. Therefore, sensitivities are
not derived and the optimization is carried out through an
SQP algorithm structured as shown inFig. 4.

3.3. Simultaneous strategy

In the simultaneous strategy, the DAE solution and opti-
mization converge simultaneously through the discretization
of both state and control profiles. The ODEs are discretized
using, for example, the A-stable orthogonal collocation on
finite elements[25] and the resulting algebraic equations are
added to the NLP formulation having the polynomial co-
efficients as optimization variables. Alternative approaches
such as B-spline collocation can also be applied[24,36].
Consequently, the ODE model is solved only once over
the optimization procedure. The main advantages of this
approach lies on the treatment of profile constraints as well
as bounds and elimination of costly and possibly infeasible
intermediate solutions. Conversely, the major deficiency of
this strategy lies in its explosive dimension. Neither this
strategy nor the preceding one (Section 3.1) is ensured to
be stable[37]. The stability issues for the simultaneous



M. Joly, J.M. Pinto / Chemical Engineering Journal 97 (2004) 87–101 95

Fig. 5. Scheme of finite element collocation forK = 2 and NE= 3.

strategy are depicted in[37,38]. In addition, the formulation
is characterized by a high degree of nonlinearity associ-
ated to the element placement constraints. As a result, the
procedure can be very sensitive to starting points and must
require a careful initialization[16,19].

In this paper, we are concerned with the orthogonal col-
location method, which is as follows. To convert the DAOP
defined in (4) into a nonlinear program we first discretize
the ODEs by applying orthogonal collocation on finite el-
ements[25]. ConsiderFig. 5, where three finite elements
(NE = 3) and two inner collocation points (K = 2) are rep-
resented. The location of the collocation points are chosen
to correspond to the shifted roots of an orthogonal Legen-
dre polynomial of degreeK. The time domaint ∈ [0, tf ] is
normalized and partitioned into NE finite elements, where
elementi is bounded by two knots,αi andαi+1, with�αi =
αi+1–αi, i = 1, . . . ,NE, where clearlyα0 = 0 andαNE+1 =
1. By mapping each finite element to normalized time, say
t ∈ [0,1], the relationship betweent andt becomes as fol-
lows:

t = αi + t(αi+1 − αi), i = 1, . . . ,NE

for t ∈ [αi, αi+1] (6)

and the locations of the orthogonal Legendre roots in each
elementi are mapped to the following points:

tij = αi + tj(αi+1 − αi),
i = 1, . . . ,NE, j = 0, . . . , K (7)

wheretj is the relative, normalized location of thejth (j >
0) shifted root of an orthogonal Legendre polynomial of de-
greeK. Also,t0 = 0 is imposed to ensure the existence of a
coefficient at the beginning of each element. State and con-
trol variable profiles,Z(t) and U(t) are approximated over
each elementi by Lagrange interpolation polynomials, re-
spectively:

ziK+1(t) =
K∑
j=0

zijϕij (t), ϕij (t) =
K∏

k=0,j

t − tik
tij − tik (8)

uiK(t) =
K∑
j=1

uijψij (t), ψij (t) =
K∏

k=1,j

t − tik
tij − tik (9)

wherek = 0, j denotesk = 0, . . . , j–1, j + 1, . . . , K. The
term ziK+1(t) denotes a (K + 1)th order (degree< K + 1)
polynomial whereasuiK(t) denotes aKth order (degree< K)

polynomial. The difference in the orders is due to the initial
condition forZ(t). Note thatziK+1(tij ) = zij anduiK(tij ) =
uij . As pointed out in[25], this property of the Lagrange
polynomials is very desirable, since for chemical engineer-
ing problems states and controls often represent physical
quantities, such as temperature or concentration. This in turn
becomes useful when providing bounds on variables, ini-
tializing a profile or interpreting solution profiles. Replacing
Eqs. (8) and (9)into the ODE model and enforcing the ODE
in each element at theK shifted roots (til) of a Kth degree
Legendre polynomial leads to the following collocation (or
residual) equations:

R(til ,�αi) =
K∑
j=0

zij ϕ̇ij (til )− F [x,uil ,zil , til ] = 0,

i = 1, . . . ,NE, l = 1, . . . , K (10)

with z10 = Z0.
The calculation ofϕ̇ij (til ) can be simplified[25] and

Eq. (10)is rewritten as:

R(til ) =
K∑
j=0

zij
ϕ̇j(tl)

�αi
− F [x,uil ,zil , til ] = 0,

i = 1, . . . ,NE, l = 1, . . . , K (11)

with z10 = Z0.
The expression foṙϕj(tl) can be easily calculated off-line

through the following recursive formula:

ϕ̇j(tl) =
(

2tl −
∑K
j′=0,jtj

t2j − tj
∑K
j′=0,j(tj)+

∏K
j′=0,j(tj)

)
,

j = 0, . . . , K, l = 1, . . . , K (12)

An additional set of equations enforces continuity for
ziK+1(t) at the interior knotsαi, i = 1, . . . ,NE, as follows:

zi0 =
K∑
j=0

zi−1,jϕj(t = 1), i = 2, . . . ,NE,

ϕj(t) =
K∏

k=0,j

t − tk
tj − tk (13)

These equations extrapolate the polynomialzi−1
K+1(t) to the

end point of its element and provide an initial condition for
the next polynomialziK+1(t). Although differentiable and
piecewise polynomial approximations for the state profile
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can also be used, the continuous and piecewise approxi-
mation described in this section is sufficient in the present
work, particularly since the process model may have nondif-
ferentiable solution profiles. Therefore, the following NLP
formulation is obtained:

Min
x,uil ,zil

ϕ[x, uil , zil ]

s.t. c[x, uil , zil ] = 0, R(ti,l) = 0,

i = 1, . . . ,NE, l = 1, . . . , K,

z10=Z0, zi0=
K∑
j=0

zi−1jϕj (t = 1),

i = 2, . . . ,NE, xL ≤ x ≤ xU,

UL ≤ uil ≤ UU, ZL ≤ zil ≤ ZU

(14)

So far, the accuracy of the approximation however has not
been discussed. Choosing a number of elements so that their
lengths are “sufficiently small” is the first idea to minimize
the approximation error. Indeed, an appropriate placement
of these elements has a severe impact on this number and
in fact is the procedure to be followed, as discussed in the
next section.

3.3.1. Incorporating knot placement in optimization
Numerous strategies exist in the approximation theory lit-

erature for selecting a suitable distribution of knots when fi-
nite elements are used. Russell and Christiansen[39] present
an excellent review where numerical comparisons are in-
cluded. Cuthrell and Biegler[25] develop a nonfully rig-
orous method based on error equidistribution, in which the
introduction of nondifferentiabilities and highly nonlinear
equations can be regarded as major deficiencies. This work
is extended by Cuthrell and Biegler[38] for discontinuous
control and refined by Vasantharajan and Biegler[27] by de-
veloping a more reliable strategy where the approximation
error can be controlled directly in parameter optimization.
Extension to optimal control problems is explored by Logs-
don and Biegler[26] where many of the previous concepts
can be applied. The major distinction is that optimality con-
ditions for optimal control problems are systems of DAEs
and for certain conditions, as saturation of state variable pro-
files, stability and accuracy problems can occur, which is not
encountered with parameter optimization problems[27].

In order to control the overall error within every element
for all of the differential equations in the simultaneous
approach, we consider[37], which is based on the en-
forcement of the following constraints in the optimization

Table 7
Functions of (17)

Kinetics: R′
1 = k1c; R′

2 = l
(
k2 + k3

(a
τ

))
; R′

3 =
(
kapp

τ

)(
ac−

(
lw

Kapp

))

ki = f(T), i = 1,2,3; Kapp = f(T,w, τ); K0 = f(w, τ); kapp = f(T); k0 = f(w, c, τ)
�Happ = f(w, τ); �Hw

v = f(T); Cp = f(T, c, se, a,4,w, θ)

Mass transfer model: v, vM
i = f(P, T, l, w,hmd, τ), i = A,W,HMD; ωe

HMD = f(T,w,hmd, τ), whereτ = f(a, c, l, w, se) and hmd= f(a, c, se,4)

formulation:

ri = 1

2

M∑
m=1

(R(tinc)
2
m�αi) ≤ ε, i = 1, . . . ,NE (15)

whereR(tinc)m denotes the residual at the noncollocation
point tnc of the mth state profile at the finite elementi and
ε is a user-specified error tolerance. The residualsR(tinc)m
can be calculated throughEq. (11) by extrapolating the
states and controls attnc with Eqs. (8) and (9). Therefore,
the resulting optimization problem is as follows[37]:

Min
x,uil ,zil

φ[x,uil ,zil ]

s.t. c[x,uil ,zil ] = 0, R(ti,l, �αi) = 0,

i = 1, . . . ,NE, l = 1, . . . , K,

z10 = Z0, zi0 =
K∑
j=0

zi−1jϕj (t = 1),

i = 2, . . . ,NE,

1

2

M∑
m=1

(R(tinc)
2
m�αi) ≤ ε,

i = 1, . . . ,NE, �αi ≥ 0, i = 1, . . . ,NE,

NE∑
i=1

�αi = tf , xL ≤ x ≤ xU,

UL ≤ uil ≤ UU, ZL ≤ zil ≤ ZU (16)

As pointed out in[37], this enforcement is only effective
for index 1 problems, since for higher index systems the
accuracy of the higher index variables is affected due to
reduction of the error order. In these cases, a different error
control strategy on higher index variables (usually the con-
trols) is required. Furthermore, from theoretical properties
developed by Brenan and Petzold[40], high index systems
(i.e., index 2 or higher) can be considered not only by con-
trolling the integration error, but by additionally choosing
a suitable method. The minimum requirements for these
methods are[37]: index 1 problems, two-point collocation;
index 2 problems, three-point collocation; index 3 problems,
four-point collocation.

The integral terms inTables 4 and 6may be properly re-
moved by adding an extra state and a corresponding differ-
ential equation. The fundamental nylon-6,6 process model
is rewritten as in (17) andTable 7, which is an index 1 DAE
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because one differentiation step is needed to obtain an ex-
pression forP andQheat from active bounds:

max
P,Qheat

l(tf )

s.t.
da

dt
=R′

2−(R′
3+vM

A ),
dc

dt
= −(R′

3 + R′
1),

dl

dt
= R′

3 − R′
2,

dw

dt
= R′

3 + R′
1 − vM

w ,

d se

dt
= R′

1 + R′
2

dθ

dt
= −v,

dT

dt
= −�HappR

′
3

θCp
− �H

HMD
v vM

HMD

θCp

−�H
W
v v

M
W

θCp
+ Qheat

θCp
,

d4

dt
= 2ωe

HMDv

MHMD
, MW = f(c, se, a,4),

NH2 = f(a, θ)

(17)

whereR′
i (i = 1,2,3) are defined as:

R′
1 = k1c, R′

2 = l
(
k2 + k3

(a
τ

))
,

R′
3 =

(
kapp

τ

)(
ac−

(
lw

Kapp

))

and, asTables 2–6:

ki = f(T), i = 1,2,3, Kapp = f(T,w, τ),
K0 = f(w, τ), v, vM

i = f(P, T, l, w,hmd, τ),

i = A,W,HMD, �Happ = f(w, τ), kapp = f(T),
k0 = f(w, c, τ), �Hw

v = f(T),
Cp = f(T, c, se, a,4,w, θ)e, ωe

HMD = f(T,w,hmd, τ)

whereτ = f(a, c, l, w, se) andhmd= f(a, c, se,4).

Fig. 6. Typical simulation results for concentration of functional groups during a batch run.

Table 8
Initial conditions for the nylon-6,6 problem

State variable Initial value

CA0 (mol/l) 6
CC0 (mol/l) 6
CL0 (mol/l) 0
CW0 (mol/l) 11.2
CSE0 (mol/l) 0
ρ0 (kg/l) 0.971
V0 (l) 1802
T0 (K) 425

In (17), the lower case letters denote the product of vol-
ume and concentration; for instance,a = CAV and so on.
Model (17) has as initial condition4(0) = 0, since the
amount of vaporized HMD is zero at the beginning of the
batch. If necessary, the volume of liquid phase can be com-
puted by incorporating the algebraic constraintV = θ V̂sol,
whereV̂sol = f(T,w, l, θ). Note that constraints on nylon-6,6
qualities must only be active at one point of the trajectory
(t = tf ). This allows two-point collocation to find the so-
lution because the higher index portion does not propagate
into the index 1 portion of the system.

4. Results

4.1. Model simulation

In order to provide an accurate starting point for the simul-
taneous strategy, the process model (Tables 2–6) was firstly
simulated by using typical operational values as estimates
for the input heat and reactor pressure profiles. The model
simulation for a horizon of 3 h for typical initial conditions
summarized inTable 8was accomplished by MATLAB® on
a Pentium III 700 MHz platform in 0.77 CPUs.Figs. 6 and 7
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Fig. 7. Typical simulation results for the autoclave model parameters during a batch run and initial estimate for the heat input, reactor (solid line)and
vapor (dashed line) pressures.

display typical simulated trajectories for the key process
variables. The initial guesses for the input heat and reactor
pressure profiles are also presented inFig. 7.

4.2. Model optimization

In order to start the optimization procedure, both strate-
gies make use of the same initial estimate for heat input and
reactor pressure profiles are shown inFig. 7. As mentioned
in the preceding section, the simultaneous strategy also re-
lies on the simulated response as initial point for the NLP
solver. Moreover, two models are sequentially solved within
the simultaneous approach. In the first one, the time-invariant
model, an evenly spaced set of fixed knots are used to dis-
cretize the horizon. Based on the previous results, the opti-
mization ofEq. (16) is then accomplished by relaxing the
aforementioned knot placement constraint. Without this pro-
cedure, expensive computation and frequent failures were
encountered during the optimization.

The objective is to maximize the production of the de-
sired polymer satisfying product specifications (MWtarget=
13 479 and NHtarget

2 = 49.7) for a nominal batch run time of
3 h. The sequential strategy employs a piecewise linear con-

Table 9
Simultaneous approach performance and related information (ε = εr = 10−3)

Number of constraints Number of variables Number of iterations CPU time (s) Objective= max [CL ] (mol/l)

Evenly spaced knots based model
1327 1379 451 20.33 7.722

Direct error enforcement based model
1760 1639 430 38.16 7.722

trol policy under 30 sampling intervals of the same length,
with the requirement for continuity of the control from one
finite element to another. The coefficients of (5) were cho-
sen asγ = 1.5, η = 0.5 andω = 7 × 10−5. The SQP
approach is used to implement the feasible path optimiza-
tion in MATLAB ®. Here, the resulting quadratic program
determines the search direction whereas a line search pro-
cedure along the direction defines the next point. On the
other hand, the GRG-based solver CONOPT2[41] accom-
plishes the simultaneous based optimization. Here, disconti-
nuities introduced bymaxoperators (Table 5) may be easily
eliminated through smooth approximation techniques. The
modeling system GAMS 2.50[42] was used in order to im-
plement the model and its solution method. The choice for
the number of finite elements used to discretize (16) was
supported by comparisons between simulated and optimized
profiles. For two collocation points (K = 2), 10 finite ele-
ments (NE= 10) have proven to be sufficient for obtaining
satisfactory profile approximations (ε = εr = 10−3) within
acceptable computational effort.

The results of the simultaneous optimization are given in
Table 9where computational details, including the model di-
mension and CPU times are also tabulated.Table 10reports
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Table 10
Initial and optimal knot distribution (simultaneous approach)

αi, i = 1, . . . ,NE + 1

Initial 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Final 0 0.323 0.57 0.71 1.03 1.17 1.699 1.839 2.72 2.86 3.0

Table 11
Summary of the results

Solution strategy Objective= max [CL] (mol/l) MW quality (target: 13479) NH2 quality (target: 49.7) Total CPU time (s)

Sequential 7.992 13479 46.13 133
Simultaneous 7.722 13490 50.20 58.8
Initial estimate 7.687 10918 64.50 0.77

the initial (uniform) and optimal knot distribution. Objec-
tive values and resulting product qualities are summarized
in Table 11. The resulting profiles for key variables are com-
pared inFig. 8. The reliability of the approximation may
be checked by comparing the final collocation profiles with
those obtained by numerical integration, as shown inFig. 9.
Finally, in Fig. 10 the heat input and reactor pressure opti-
mal profiles produced by the two strategies as well as the
initial estimate are compared. Here, note that how the heat
input peak provided by the simultaneous solution shifts in
size and position from the sequential one as result of the
existence of multiple (local) optimal solutions.

After 133 iterations there were no significant improve-
ments in the objective value and the sequential procedure
has stopped at this point. However, this feasible approach is
more time-consuming than the simultaneous one since it re-
quires repeated and expensive solution of the overall DAE
system (Table 11). Furthermore, computational cost is still

Fig. 8. Optimal profiles for key variables obtained with sequential (solid line) and simultaneous (dashed line) approaches.

high due to the need of parallel convergence of the quality
parameters in (4), since the state variable bounds cannot be
enforced in a straightforward way. Nevertheless, the com-
putational performance of the proposed sequential approach
can be acceptable for industrial purposes.

Table 9summarizes model features and related computa-
tional performance of the simultaneous strategy. As can be
seen, although substantially larger, the variable-knot model
was solved in a smaller number of iterations, which were
clearly more time-consuming tasks than the previous ones.
Apparently, this results from its starting point (note that the
objective value remains the same), which is the solution of
the fixed knot model. Despite appreciable changes in the
knot distribution (Table 10), particularly in the final instants
of the horizon (product depuration), no improvement was
verified for the objective value. However, this is not surpris-
ing since the second model (variable-knot location), albeit
less constrained than the first model (fixed knot location)
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Fig. 9. Optimal profiles obtained through collocation (dashed) and the correspondent ones produced by numerical integration (solid line) of the solution.

Fig. 10. Optimal profiles obtained through the sequential (long dashed) and simultaneous (short dashed) approaches and the initial estimate (solid line)
for the controls.

from the knot placement viewpoint is more restricted in
what concerns the approximation error. As a consequence,
comparative worst objective were not rare when running
the second formulation. Finally,Table 11demonstrates the
effectiveness of both optimization strategies over the simu-
lated results provided by the initial estimate for the control
profiles.

5. Concluding remarks

In this contribution the dynamic optimization problem of
batch nylon-6,6 autoclave process has been presented and
solved through NLP techniques in order to evaluate their
capabilities for determining optimal operating profiles. As
a basis for the proposed study, the process model from
Russell et al.[9] was chosen due to the its suitable and
well-known phenomenological structure. A qualitative dy-
namic optimization that takes into account operation condi-
tions, wear and tear of the equipment, product quality and
energy consumption is then accomplished through two dis-
tinct NLP-based solution strategies.

Several concepts were discussed in order to introduce the
necessary background for the proposed study. First, we took
an in-depth view of the batch nylon-6,6 autoclave process
and introduced the fundamental process model. Inherent fea-

tures of the sequential and simultaneous methods were then
discussed and formalized. A simpler and reliable strategy
from [37] where the approximation error can be controlled
was also outlined and implemented within the simultane-
ous approach. In particular, regarding the well-known diffi-
culties in finding global solutions for large-scale nonconvex
NLP models, this study is concerned with local optima de-
termination.

Beyond the aforementioned dimension and nonconvexity
issues, the nylon-6,6 batch autoclave model is characterized
by its large diversity in size order of the variable set (values
ranging from∼10−5 to 109). Therefore, it is mandatory to
perform good variable and equation scaling or meaningless
solutions can be reported with the simultaneous approach.
In counterpart, a suitable selection of the error term coef-
ficients as well as the scaling of the controls is imperative
to accomplish the optimization in competitive CPU times
through the sequential strategy. As a consequence, the im-
proved performance of both strategies is usually achieved
only after an expressive level of investment in terms of
modeling implementation. Results have shown that both
strategies can be successfully applied to solve the nylon-6,6
batch autoclave optimization problem. Nevertheless, the
simultaneous strategy enables that quality constraints on
state variables are imposed in a straightforward manner and
therefore generates better and more robust solutions.
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